The main scope of this paper is to present an alternative to tackle the problem of the non symmetries arising in the solution of the nonlinear couple consolidation problem based on a combination of different stress states. Being originally a non symmetric problem, it may be straightforward reduced to a symmetric one, and the conditions in which this reduction may be carried out, are addressed. Non linear saturation-suction and permeability-suction functions were regarded. The geometric model was developed considering an updated lagrangian description with a co-rotated Kirchhoff stress tensor. This description leads to a non-symmetric stiffness matrix and a simple alternative, using a symmetric constitutive matrix, is addressed to overcome this situation. The whole equation system was solved using an open finite element code FECCUND, developed by the authors. In order to validate the model, various examples, for which previous solutions are known, were solved. The use of either a strongly non linear and no symmetric formulation or a simple symmetric formulation with accurate prediction in deformation and pore-pressures is extremely dependent on the soil characteristic curves and on the shear efforts level, as well. A numerical example show the predictive capability of this geometrically non linear fully coupled model for attaining the proposed goal.
Published in | American Journal of Applied Mathematics (Volume 3, Issue 2) |
DOI | 10.11648/j.ajam.20150302.11 |
Page(s) | 31-35 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Finite Element Analysis, Hypoelastic Formulations, Non Saturated Soil Model, Saturation-Suction Relationship Introduction
[1] | Z.Y. Ai, Y.C. Cheng, W.Z. Zeng, C. Wu, 3-D consolidation of multilayered porous medium with anisotropic permeability and compressible pore fluid, Meccanica 48 (2013), 491-499 |
[2] | M.A. Biot, General theory of three dimensional consolidation, J. Appl. Phys. 12 (1941),155-164 |
[3] | H.A. Di Rado, J.L. Mroginski, P.A. Beneyto, A.M. Awruch, A symmetric constitutive matrix for the nonlinear analysis of hypoelastic solids based on a formulation leading to a non-symmetric stiffness matrix, Communications in Numerical Methods in Engineering. 24 (2008), 1079–1092 |
[4] | H. Di Rado, P. Beneyto, J. Mroginski, A. Awruch, Influence of the saturation-suction relationship in the formulation of non-saturated soil consolidation models, Math. Comput. Model. 49 (2009) 1058-1070. |
[5] | J. Ghaboussi, K. Kim, Quasistatic and Dynamic Analysis of Saturated and Partially Saturated Soils. Mechanics of Engineering Materials, 14 (1984) 277-296 |
[6] | S. Hassanizadeh, W. Gray, General conservation equation for multiphase systems: 1 Averaging procedure. Advances in water resources 2 (1979), 131-144 |
[7] | S. Hassanizadeh, W. Gray, General conservation equation for multiphase systems: 2 Mass, Momenta, Energy and Entropy equations, Advances in water resources, 2 (1979), 191-203 |
[8] | S. Hassanizadeh, W. Gray, General conservation equation for multiphase systems: 3 Constitutive theory for porous media flow, Advances in water resources, 3 (1980), 25-40 |
[9] | N. Khalili, M.H. Khabbaz, M.H., On the theory of three-dimensional consolidation in unsaturated soils, First International Conference on Unsaturated Soils - UNSAT'95, 1995, 745-750. |
[10] | G. Klubertanz, F. Bouchelaghem, L. Laloui, L. Vulliet, Miscible and Immiscible Multiphase Flow in Deformable Porous Media, Mathematical and Computer Modeling. 37 pp. 571-582 (2003). |
[11] | R.W. Lewis, B.A. Schrefler, The Finite Element Method in the Deformation and Consolidation of Porous Media, J. Wiley & Sons, New York. (1987). |
[12] | R.W. Lewis, B.A. Schrefler, N.A. Rahman, A Finite Element Analysis of Multiphase Immiscible Flow in Deforming Porous Media for Subsurface Systems, Communications in Numerical Methods in Engineering, 14 (1998), 135-149. |
[13] | L.E. Malvern, Introduction to the Mechanics of a Continuum Medium. Prentice Hall, USA.(1969). |
[14] | I. Masters, W.K.S. Pao, and R. Lewis, Coupling temperature to a double porosity model of deformable porous media, Int. J. Numer. Anal. Meth. Geomech. 49 (2000), 421-438 |
[15] | R.J. Moitsheki, P. Broadbridge, M.P. Edwards, Symmetry solutions for transient solute transport in unsaturated soils with realistic water profile. Transport in Porous Media 61 (2005), 109-125 |
[16] | J.L. Mroginski, H.A. Di Rado, P.A. Beneyto, A.M. Awruch “A finite element approach for multiphase fluid flow in porous media, Mathematics and Computers in Simulation. 81 (2010), 76-91 |
[17] | J.L. Mroginski and G. Etse, A finite element formulation of gradient-based plasticity for porous media with C1 interpolation of state variables, Computers and Geotechnics, 49 (2013), 7-17 |
[18] | A.K.L. Ng, J.C. Small, Use of coupled finite element analysis in unsaturated soil problems, Int. J. Numer. Anal. Meth. Geomech. 24 (2000), 73-94 |
[19] | S. Pietraszezak, G.N. Pandle, On the mechanics of partially saturated soils, Computers and Geotechnics 12 (1991), 55-71 (1991) |
[20] | P. Royer, C. Boutin, Time Analysis of the Three Characteristic Behaviours of Dual-Porosity Media. I: Fluid Flow and Solute Transport, Transport in porous media, 95 (2012), 603-626 |
[21] | B.A. Schrefler, Computer modeling in environmental geomechanics, Computers and structures, 79 (2001), 2209-2223 |
[22] | J.C. Simo, T.J.R. Hughes, Computational Inelasticity. Springer – Verlag. New York, Inc. (1998) |
[23] | F. Su, F. Larsson, K. Runesson, Computational homogenization of coupled consolidation problems in micro heterogeneous porous media, Int. J. Num. M. Eng. 88 (2011), 1198–1218 |
[24] | P. Tritscher, W.W. Read, P. Broadbridge, J.H. Knight, Steady saturated-unsaturated flow in irregular porous domains. Mathematical and Computer Modelling 34 (2001), 177-194 |
[25] | H. A. Di Rado, “Numerical Simulation of physical and geometric nonlinearities. None saturated soil consolidation analysis” (Spanish). Doctoral Thesis, Northeast National University. Argentine, Ch. 5 (2006),121-133 |
APA Style
Héctor Ariel Di Rado, Pablo Alejandro Beneyto, Javier Luis Mroginski, Juan Emilio Manzolillo. (2015). A Strategy for Solving the Non Symmetries Arising in Nonlinear Consolidation of Partially Saturated Soils. American Journal of Applied Mathematics, 3(2), 31-35. https://doi.org/10.11648/j.ajam.20150302.11
ACS Style
Héctor Ariel Di Rado; Pablo Alejandro Beneyto; Javier Luis Mroginski; Juan Emilio Manzolillo. A Strategy for Solving the Non Symmetries Arising in Nonlinear Consolidation of Partially Saturated Soils. Am. J. Appl. Math. 2015, 3(2), 31-35. doi: 10.11648/j.ajam.20150302.11
AMA Style
Héctor Ariel Di Rado, Pablo Alejandro Beneyto, Javier Luis Mroginski, Juan Emilio Manzolillo. A Strategy for Solving the Non Symmetries Arising in Nonlinear Consolidation of Partially Saturated Soils. Am J Appl Math. 2015;3(2):31-35. doi: 10.11648/j.ajam.20150302.11
@article{10.11648/j.ajam.20150302.11, author = {Héctor Ariel Di Rado and Pablo Alejandro Beneyto and Javier Luis Mroginski and Juan Emilio Manzolillo}, title = {A Strategy for Solving the Non Symmetries Arising in Nonlinear Consolidation of Partially Saturated Soils}, journal = {American Journal of Applied Mathematics}, volume = {3}, number = {2}, pages = {31-35}, doi = {10.11648/j.ajam.20150302.11}, url = {https://doi.org/10.11648/j.ajam.20150302.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajam.20150302.11}, abstract = {The main scope of this paper is to present an alternative to tackle the problem of the non symmetries arising in the solution of the nonlinear couple consolidation problem based on a combination of different stress states. Being originally a non symmetric problem, it may be straightforward reduced to a symmetric one, and the conditions in which this reduction may be carried out, are addressed. Non linear saturation-suction and permeability-suction functions were regarded. The geometric model was developed considering an updated lagrangian description with a co-rotated Kirchhoff stress tensor. This description leads to a non-symmetric stiffness matrix and a simple alternative, using a symmetric constitutive matrix, is addressed to overcome this situation. The whole equation system was solved using an open finite element code FECCUND, developed by the authors. In order to validate the model, various examples, for which previous solutions are known, were solved. The use of either a strongly non linear and no symmetric formulation or a simple symmetric formulation with accurate prediction in deformation and pore-pressures is extremely dependent on the soil characteristic curves and on the shear efforts level, as well. A numerical example show the predictive capability of this geometrically non linear fully coupled model for attaining the proposed goal.}, year = {2015} }
TY - JOUR T1 - A Strategy for Solving the Non Symmetries Arising in Nonlinear Consolidation of Partially Saturated Soils AU - Héctor Ariel Di Rado AU - Pablo Alejandro Beneyto AU - Javier Luis Mroginski AU - Juan Emilio Manzolillo Y1 - 2015/02/02 PY - 2015 N1 - https://doi.org/10.11648/j.ajam.20150302.11 DO - 10.11648/j.ajam.20150302.11 T2 - American Journal of Applied Mathematics JF - American Journal of Applied Mathematics JO - American Journal of Applied Mathematics SP - 31 EP - 35 PB - Science Publishing Group SN - 2330-006X UR - https://doi.org/10.11648/j.ajam.20150302.11 AB - The main scope of this paper is to present an alternative to tackle the problem of the non symmetries arising in the solution of the nonlinear couple consolidation problem based on a combination of different stress states. Being originally a non symmetric problem, it may be straightforward reduced to a symmetric one, and the conditions in which this reduction may be carried out, are addressed. Non linear saturation-suction and permeability-suction functions were regarded. The geometric model was developed considering an updated lagrangian description with a co-rotated Kirchhoff stress tensor. This description leads to a non-symmetric stiffness matrix and a simple alternative, using a symmetric constitutive matrix, is addressed to overcome this situation. The whole equation system was solved using an open finite element code FECCUND, developed by the authors. In order to validate the model, various examples, for which previous solutions are known, were solved. The use of either a strongly non linear and no symmetric formulation or a simple symmetric formulation with accurate prediction in deformation and pore-pressures is extremely dependent on the soil characteristic curves and on the shear efforts level, as well. A numerical example show the predictive capability of this geometrically non linear fully coupled model for attaining the proposed goal. VL - 3 IS - 2 ER -