| Peer-Reviewed

Spin Transport and Dynamics in Multilayer Magnetic Nanostructures

Received: 26 March 2018     Accepted: 13 April 2018     Published: 11 May 2018
Views:       Downloads:
Abstract

The interconnection between the spin current and spin dynamics via the spin-dependent scattering and an accompanying by spin torque effect in ferromagnetic/normal metal based magnetic multilayer nanostructures is studied including a high fast out-of-equilibrium spin dynamics. Features of the spin transport through interfaces and its impact on spin dynamics are described on the base of the scattering matrix formalism for spin flows. The dependence of the spin torque effect on conductance character of the normal metal layers is considered. The exchange processes between the itinerant s and the localized d electrons are described by kinetic rate equations for electron-magnon spin-flop scattering. It is shown that the magnon distribution function remains nonthermalized on the relevant time scales of the demagnetization process, and the relaxation of the out-of-equilibrium spin accumulation among itinerant electrons provides the principal channel for dissipation of spin angular momentum from the combined electronic system.

Published in American Journal of Nano Research and Applications (Volume 6, Issue 1)
DOI 10.11648/j.nano.20180601.13
Page(s) 21-33
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2018. Published by Science Publishing Group

Keywords

Magnetic Nanostructures, Spin Transport, Scattering, Spin Torque Effect, Electron-Magnon Spin-flop Scattering, Nonequilibrium Spin Dynamics

References
[1] J. Akerman, “Toward a Universal Memory,” Science, vol. 308, pp. 508–510, April 2005.
[2] L. Berger, “Emmision of spin waves by a magnetic multilayer transverse by a current,” Phys. Rev. vol. B 54, pp. 9353-9358, October 1996.
[3] J. Slonczewski, “Current-driven excitation of magnetic multilayers,” J. Magn. Magn. Mater., vol. 159, pp. L1-L7, December 1996.
[4] M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, and P. Wyder, “Excitation of a Magnetic Multilayer by an Electric Current,” Phys. Rev. Lett. vol. 80, pp. 4281-4284, May 1998.
[5] Z. Sun, “Current-driven magnetic switching in manganite trilayer junctions,” J. Magn. Magn. Mater., vol. 202, pp. 157-162, December 1999.
[6] E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A. Buhrman,” Current-Induced Switching of Domains in Magnetic Multilayer Devices,” Science, vol. 285, pp. 867-870, October 1999.
[7] J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C. Ralph, “Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu/Co Pillars,” Phys. Rev. Lett., vol. 84, 3148-3152, April 2000.
[8] T. Valet and A. Fert,”Theory of perpendicular magnetoresistance in magnetic multilayers,” Phys. Rev., vol. B 48, pp. 7099-7104, April 1993.
[9] H. E. Camblong, P. M. Levy, and S. Zhang, “Electron transport in magnetic in homogeneous media,” Phys. Rev., vol. B 51, pp. 16052-16072, June 1995.
[10] M. D. Stiles, “Oscillatory exchange coupling in Fe/Cr multilayers,” Phys. Rev., vol. B 54, pp. 14679-14685, November 1996.
[11] K. M. Schep, J. B. A. N. van Hoof, P. J. Kelly, G. E. W. Bauer, and J. E. Inglesfield, “Interface resistances of magnetic multilayers,” Phys. Rev., vol. B 56, pp. 10805-10808, November 1997.
[12] A. Brataas, Y. V. Nazarov, and G. E. W. Bauer, "Finite-Element Theory of Transport in Ferromagnet–Normal Metal Systems,” Phys. Rev. Lett., vol. 84, pp. 2481-2484, March 2000.
[13] X. Waintal, E. B. Myers, P. W. Brouwer, and D. C. Ralph, “Role of spin-dependent interface scattering in generating current-induced torques in magnetic multilayers,” Phys. Rev., vol. B62, pp. 12317-12327, May 2000.
[14] G.-M. Choi, B.-C. Min, K.-J. Lee, and D. G. Cahill, “Spin current generated by thermally driven ultrafast demagnetization,” Nat. Commun., vol. 5, pp. 4334-4341, June 2014.
[15] A. Kirilyuk, A. V. Kimel, and T. Rasing, “Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys,” Rev. Mod. Phys., vol. 82, 2731-2784 September 2010.
[16] A. Kirilyuk, A. V. Kimel, and T. Rasing, “Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys,” Rep. Prog. Phys., vol. 76, pp. 026501-(1)-(5), May 2013.
[17] E. M. Lifshitz and L. P. Pitaevskii. Statistical Physics, Part 2, 3rd ed., Course of Theoretical Physics, vol. 9, Oxford: Pergamon, 1980.
[18] J. Xiao, G. E. W. Bauer, K.-C. Uchida, E. Saitoh, and S. Maekawa, “Theory of magnon-driven spin Seebeck effect,” Theory of magnon-driven spin Seebeck effect,” Phys. Rev, vol. B 81, pp. 214418(1)-(8), June, 2010.
[19] G. E. W. Bauer, E. Saitoh, and B. J. van Wees, ”Spincaloritronics,” Nat. Mater., vol. 11, pp. 391-399, April 2012.
[20] B. Koopmans, J. J. M. Ruigrok, F. Dalla Longa, andW. J. M. de Jonge, “Unifying Ultrafast Magnetization Dynamics,” Phys. Rev. Lett., vol. 95, pp. 267207, December 2005.
[21] J. Walowski, G. Mϋller, M. Djordjevic, M. Mϋnzenberg, M. Kläui, C. A. F. Vaz, and J. A. C. Bland, “Energy Equilibration Processes of Electrons, Magnons, and Phonons at the Femtosecond Time Scale,” Phys. Rev. Lett., vol. 101, pp. 237401, December 2008.
[22] A. Brataas, A. D. Kent, and H. Ohno, “Current-induced torques in magnetic materials,” Nat. Mater., vol. 11, 372-381, December 2012.
[23] E. G. Tveten and A. Brataas, “Electron-magnon scattering in magnetic heterostructures far out of equilibrium,” Phys. Rev., vol. 92, pp. 180412-(1)-(5), November (2015).
[24] L. Berger, “Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films,” J. Appl. Phys., vol. 55, pp. 1954-1956, April 1984.
[25] C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys., vol. 69, pp. 731-808, July 1997.
[26] K. B. Hathaway and J. R. Cullen, “A free electron model for the exchange coupling of ferromagnets through paramagnetic metals,” J. Magn. Magn. Mater., vol. 104-107, pp. 1840-1842, November 1992.
[27] J. C. Slonczewski, “Mechanism of interlayer exchange in magnetic multilayers,” J. Magn. Magn. Mater., 126, 374-379, May 1993.
[28] P. Bruno, “Theory of interlayer magnetic coupling,” Phys. Rev., vol. B 52, 411-439, July 1995.
[29] D. M. Edwards, F. Federici, J. Mathon, and A. Umerski, “Self-consistent theory of current-induced switching of magnetization,” Phys. Rev., vol. B 71, pp. 054407-(1)-(16), February 2005.
[30] A. Brataas, Yu. V. Nazarov, and G. E. W. Bauer, “Finite-Element Theory of Transport in Ferromagnet–Normal Metal Systems,” Phys. Rev. Lett., vol. 84, pp. 2481-2484, March 2000.
[31] P. W. Brouer and C. W. J. Beenakker, “Diagram method of integration over the unitary group, with applications to quantum transport in mesoscopic systems,” J. Math. Phys., vol. 37, pp. 4904-4934, July 1996.
[32] J. Slonczewski, “Excitation of spin wave by electric current,” Magn. Magn. Mater., vol. 195, pp. L261-L268, September 1999.
[33] E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, “Ultrafast Spin Dynamics in Ferromagnetic Nickel,” Phys. Rev. Lett., vol. 76, pp. 4250-4253, May 1996.
[34] J.-Y. Bigot, M. Vomir, and E. Beaurepaire, “Coherent Ultrafast magnetism induced by femtosecond laser pulses,” Nat. Phys., vol. 5, pp. 515-520, May (2009).
[35] A. J. Schellekens and B. Koopmans, “Microscopic model for ultrafast magnetization dynamics of multisublattice magnets,” Phys. Rev., vol. B 87, pp. 020407(1)-(5) (2013).
[36] A. Eschenlohr, M. Battiato, P. Maldonado, N. Pontius, T. Kachel, K. Holldack, R. Mitzner, A. F¨ohlisch, P. M. Oppeneer, and C. Stamm, “Ultrafast spin transport as key to femtosecond demagnetization,” Nat. Mater., vol. 12, pp. 332-336, January 2013.
[37] C. Illg, M. Haag, and M. Fähnle, “Ultrafast demagnetization after laser irradiation in transition metals: Ab initio calculations of the spin-flip electron-phonon scattering with reduced exchange splitting,” Phys. Rev., vol. B 88, pp. 214404(1)-(5) August 2013.
[38] Y. Zhang, T.-H. Chuang, K. Zakeri, and J. Kirschner, “Relaxation Time of Terahertz Magnons Excited at Ferromagnetic Surfaces,” Phys. Rev. Lett., vol. 109, pp. 087203(1)-(5) August 2012.
[39] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, “Nonlocal magnetization dynamics in ferromagnetic heterostructures,” Rev. Mod. Phys., vol. 77, pp. 1375-1421, October 2005.
[40] S. A. Bender and Y. Tserkovnyak, “Interfacial spin and heat transfer between metals and magnetic insulators,” Phys. Rev., vol. B 91, pp. 140402(1)-(5), April 2015.
[41] A.-P. Jauho, N. S. Wingreen, and Y. Meir, “Time-dependent transport in interacting and noninteracting resonant-tunneling systems,” Phys. Rev., vol. B 50, pp. 55285544, August 1994.
[42] B. Y. Mueller, A. Baral, S. Vollmar, M. Cinchetti, M. Aeschlimann, H. C. Schneider, and B. Rethfeld, “Feedback Effect during Ultrafast Demagnetization Dynamics in Ferromagnets,” Phys. Rev. Lett., vol. 111, pp. 167204(1)-(5) 2013.
[43] J. Barker, U. Atxitia, T. A. Ostler, O. Hovorka, O. Chubykalo- Fesenko, and R. W. Chantrell, Sci. Rep., vol. 3, pp. 3262(1)-(5) (2013).
[44] Y. Tserkovnyak, E. M. Hankiewicz, and G. Vignale, “Transverse spin diffusion in ferromagnets,” Phys. Rev., vol. B79, pp. 094415(1)-(11), March 2009.
[45] R. Meservey and P. M. Tedrow, Phys. Rev. Lett., vol. 41, pp. 805 (1978).
[46] U. Atxitia, O. Chubykalo-Fesenko, J. Walowski, A. Mann, and M. M¨unzenberg, “Evidence for thermal mechanisms in laser-induced femtosecond spin dynamics,” Phys. Rev., B 81, pp. 174401(1)-(8), May 2010.
[47] A. Weber, F. Pressacco, S. G¨unther, E. Mancini, P. M. Oppeneer, and C. H. Back, “Ultrafast demagnetization dynamics of thin Fe/W(110) films: Comparison of time- and spin-resolved photoemission with time-resolved magneto-optic experiments,” vol. 84, pp. 132412(1)-(5), October 2011.
[48] Y. Liu, Z. Yuan, R. J. H. Wesselink, A. A. Starikov, and P. J. Kelly, “Interface Enhancement of Gilbert Damping from First Principles Phys. Rev. Lett., vol. 113, pp. 207202(1)-(5), November 2014.
Cite This Article
  • APA Style

    Andrii Korostil, Mykola Krupa. (2018). Spin Transport and Dynamics in Multilayer Magnetic Nanostructures. American Journal of Nano Research and Applications, 6(1), 21-33. https://doi.org/10.11648/j.nano.20180601.13

    Copy | Download

    ACS Style

    Andrii Korostil; Mykola Krupa. Spin Transport and Dynamics in Multilayer Magnetic Nanostructures. Am. J. Nano Res. Appl. 2018, 6(1), 21-33. doi: 10.11648/j.nano.20180601.13

    Copy | Download

    AMA Style

    Andrii Korostil, Mykola Krupa. Spin Transport and Dynamics in Multilayer Magnetic Nanostructures. Am J Nano Res Appl. 2018;6(1):21-33. doi: 10.11648/j.nano.20180601.13

    Copy | Download

  • @article{10.11648/j.nano.20180601.13,
      author = {Andrii Korostil and Mykola Krupa},
      title = {Spin Transport and Dynamics in Multilayer Magnetic Nanostructures},
      journal = {American Journal of Nano Research and Applications},
      volume = {6},
      number = {1},
      pages = {21-33},
      doi = {10.11648/j.nano.20180601.13},
      url = {https://doi.org/10.11648/j.nano.20180601.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.nano.20180601.13},
      abstract = {The interconnection between the spin current and spin dynamics via the spin-dependent scattering and an accompanying by spin torque effect in ferromagnetic/normal metal based magnetic multilayer nanostructures is studied including a high fast out-of-equilibrium spin dynamics. Features of the spin transport through interfaces and its impact on spin dynamics are described on the base of the scattering matrix formalism for spin flows. The dependence of the spin torque effect on conductance character of the normal metal layers is considered. The exchange processes between the itinerant s and the localized d electrons are described by kinetic rate equations for electron-magnon spin-flop scattering. It is shown that the magnon distribution function remains nonthermalized on the relevant time scales of the demagnetization process, and the relaxation of the out-of-equilibrium spin accumulation among itinerant electrons provides the principal channel for dissipation of spin angular momentum from the combined electronic system.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Spin Transport and Dynamics in Multilayer Magnetic Nanostructures
    AU  - Andrii Korostil
    AU  - Mykola Krupa
    Y1  - 2018/05/11
    PY  - 2018
    N1  - https://doi.org/10.11648/j.nano.20180601.13
    DO  - 10.11648/j.nano.20180601.13
    T2  - American Journal of Nano Research and Applications
    JF  - American Journal of Nano Research and Applications
    JO  - American Journal of Nano Research and Applications
    SP  - 21
    EP  - 33
    PB  - Science Publishing Group
    SN  - 2575-3738
    UR  - https://doi.org/10.11648/j.nano.20180601.13
    AB  - The interconnection between the spin current and spin dynamics via the spin-dependent scattering and an accompanying by spin torque effect in ferromagnetic/normal metal based magnetic multilayer nanostructures is studied including a high fast out-of-equilibrium spin dynamics. Features of the spin transport through interfaces and its impact on spin dynamics are described on the base of the scattering matrix formalism for spin flows. The dependence of the spin torque effect on conductance character of the normal metal layers is considered. The exchange processes between the itinerant s and the localized d electrons are described by kinetic rate equations for electron-magnon spin-flop scattering. It is shown that the magnon distribution function remains nonthermalized on the relevant time scales of the demagnetization process, and the relaxation of the out-of-equilibrium spin accumulation among itinerant electrons provides the principal channel for dissipation of spin angular momentum from the combined electronic system.
    VL  - 6
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Magnetic Mesoscopic Materials and Nanocrystalline Structures, Institute of Magnetism, Kyiv, Ukraine

  • Department of Magnetic Mesoscopic Materials and Nanocrystalline Structures, Institute of Magnetism, Kyiv, Ukraine

  • Sections