We consider the generation of diffusive radiation by a charged particle passing through a random stack of plates in the infrared region. The main mechanism causing radiation is multiple scattering of electromagnetic field that is more effective in a medium with near zero average dielectric permittivity. To enhance the radiation intensity one needs to make the scattering more effective. For this goal we suggest to use materials with negative dielectric constant.
Published in | World Journal of Applied Physics (Volume 1, Issue 2) |
DOI | 10.11648/j.wjap.20160102.13 |
Page(s) | 44-47 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Radiation, Dielectric Constant, Scattering of Pseudophotons, Elastic Mean Free Path, Number of Photons
[1] | A. I. Artemyev, M. V. Fedorov, J.K. Mclver, and E. A. Shapiro, IEEE J. of Q. Electr., 34, no. 1, pp. 24-31, 1998. |
[2] | V. V. Apollonov, A. I. Artemyev, M. V. Fedorov, E. A. Shapiro, J. K. McIver, 31 August 1998 / Vol. 3, No. 5 / Optics Express 162. |
[3] | G. A. Amatuni, A. S. Gevorkyan, S. G. Gevorkian, A. A. Hakobyan, K. B. Oganesyan, V. A. Saakyan, and E. M. Sarkisyan, Laser Physics, 2008, Vol. 18, No. 5, pp. 608–620. |
[4] | H. C. Lihn, P. Kung., C. Settakron, H. Wiedemann, D. Bocek, M. Hernandez, Phys. Rev. Lett. 76, 4163-4166 (1996). |
[5] | Y. Shibata et al., Phys.Rev. E, 49, (1994) 785-793; NIM A 483 (2002) 209–213; 483 (2002) 440–444; 528 (2004) 162–166. |
[6] | Casalbuoni et al., Phys. Rev. ST AB, 12, 030705(13) (2009). |
[7] | A. H. Lumpkin et al., Phys. Rev. ST AB 12, 080702 (2009). |
[8] | K. Yamada et al., J. of Electron Spectroscopy and Related Phenomena, 101-103, June 1999, Pages 897-901. |
[9] | J. M. Andre et al., NIM A 498, Issues 1-3, 11 February 2003, Pages 532-538. |
[10] | N. N. Nasonov et al., NIM A 254, Issue 2, January 2007, Pages 259-267. |
[11] | Zh. S. Gevorkian and J. Verhoeven, NIM A 252, Issue 1, November 2006, Pages 57-61. E. M. Sarkisyan, Zh. S. Gevorkian, K. B. Oganesyan, V. V. Harutyunyan, V. A. Saakyan, S. G. Gevorgyan, J. Verhoeven, M. V. Fedorov, A. I. Artemiev, and S. M. Fedorov, Laser Physics 17, no.10, pp. 080-1084, 2007. |
[12] | A. I. Artemyev, M. V. Fedorov, A. S. Gevorkyan, N. Sh. Izmailyan, R. V. Karapetyan, A. A. Akopyan, K. B. Oganesyan, Yu. V. Rostovtsev, M. O. Scully, G. Kuritzki, J. Mod. Optics, 2009, v.56, No. 18, pp. 2148-2157. |
[13] | Proceedings of the 37th International Free Electron Laser Conference FEL2015 Ed. H. S. Kang (PAL), Dong-Eon Kim (PAL), Volker RW Schaa (GSI) Pohang Korea |
[14] | M. Abo-Bakr, J. Feikes, K. Holldack, G. Wuestefeld and H. - W. Huebers, Phys. Rev. Lett. 88, 254801 (2002). |
[15] | G. P. Williams, Rev. Sci. Instrum. 73, 1461 (2002). |
[16] | M. V. Fedorov. Atomic and Free Electrons in a Strong Light Field, Singapore, World Scientific, 1997. |
[17] | Fedorov M V, Nersesov E A and Oganesyan K B 1986 Zh. Tekh. Fiz. 56 2402–4; Fedorov M V, Nersesov E A and Oganesyan K B 1986 Sov. Phys.—JTP 31 1437; Fedorov M V and Oganesyan K B 1985 IEEE J. Quantum. Electron. 21 1059–68; Zaretsky D F, Nersesov E A, Oganesyan K B and; Fedorov M V. 1986 Kvantovaya Elektron. 13 685–92; Zaretsky D F, Nersesov E A, Oganesyan K B and Fedorov M V. 1986 Sov. J. Quantum. Electron 16 448; Sarkisyan E M, Petrosyan K G, Oganesyan K B, Saakyan V A, Izmailyan N Sh and Hu C K 2008 Laser Phys. 18 621; Oganesyan K B and Fedorov M V 1987 Zh. Tekh. Fiz. 57 2105–14; Fedorov M V, Oganesyan K B and Prokhorov A M 1988 Appl. Phys. Lett. 53 353–4; Oganesyan K B, Prokhorov A M and Fedorov M V 1988 Zh. Eksp. Teor. Fiz. 53 80–6; Oganesyan K B, Prokhorov A M and Fedorov M V 1988 Sov. Phys.—JETP 68 1342; Petrosyan M L, Gabrielyan L A, Nazaryan Yu R, Tovmasyan G Kh and Oganesyan K B 2007 Laser Phys. 17 1077; Oganesyan K B 2016 J. Contemp. Phys. 51 15–9; Oganesyan K B 2015 J. Contemp. Phys. 50 312–7; Oganesyan K B 2015 J. Contemp. Phys. 50 123–8; Oganesyan K B 2016 Nucl. Instrum. Methods A 812 33–6; Oganesyan K B 2015 J. Mod. Opt. 62 933–6; Oganesyan K B 2014 J. Mod. Opt. 61 763–5; Oganesyan K B 2014 J. Mod. Opt. 61 1398–9; Klochkov D N, Artemyev A I, Kurizki G, Rostovtsev Yu V and Scully M O 2006 Phys. Rev. E 74 036503. |
[18] | Zh. S. Gevorkian, Phys. Rev. E 57, 2338 (1998); Sov. Phys. JETP 114 91, (1998). |
[19] | Zh. S. Gevorkian, Phys. Rev. Lett., B 145, 185 (2006). |
[20] | R. W. Ziolkowski, Phys. Rev. E, 70 046608 (2004). |
[21] | M. Silveirinha and N. Engheta, Phys. Rev. Lett. 97 157403 2006). |
[22] | A. Alu, M. Silveirinha, A. Salandrino and N. Engheta, Phys. Rev. B 75, 155410 (2007). |
[23] | J. Urata and et al, Phys. Rev. Lett., 80, 516, (1998). |
[24] | Zh. S. Gevorkyan, Phys. Rev. ST AB, 13, 070705, 2010. |
[25] | D. N. Klochkov, A. I. Artemiev, K. B. Oganesyan, Y. V. Rostovtsev, C. K. Hu. J. Modern Optics, 2010, V. 57, Issue 20, 2060-2068. |
[26] | D. N. Klochkov, A. I. Artemiev, K. B. Oganesyan, Y. V. Rostovtsev, M. O. Scully, C. K. Hu. Physica Scripta T, 2010, 140, (2010) 014049. |
[27] | K. B. Oganesyan. Laser Physics Letters, 12, Issue 11, 116002, 2015. |
[28] | Surface Polaritons: Electromagnetic Waves on the Surfaces and Interfaces, edited by V. M. Agranovich and A. A. Maradudin, Nauka, Moscow, (1985). |
[29] | P. W. Anderson, Phil. Mag. B52, 505 (1985). |
[30] | K. Arya, Z. B. Su and Joseph L. Birman, Phys. Rev. Lett., 57, 2725, (1986). |
[31] | F. R. Harutyunian, A. Kh. Mkhitarian, R. A. Hovhanissian, B. O. Rostomian and M. G. Sarinyan, ZhETF (Sov. Phys. JETP) 77, 1779, (1979) and references therein. |
APA Style
Edik A. Ayryan, Koryun B. Oganesyan. (2016). Radiation from Materials with Negative Dielectric Constant. World Journal of Applied Physics, 1(2), 44-47. https://doi.org/10.11648/j.wjap.20160102.13
ACS Style
Edik A. Ayryan; Koryun B. Oganesyan. Radiation from Materials with Negative Dielectric Constant. World J. Appl. Phys. 2016, 1(2), 44-47. doi: 10.11648/j.wjap.20160102.13
@article{10.11648/j.wjap.20160102.13, author = {Edik A. Ayryan and Koryun B. Oganesyan}, title = {Radiation from Materials with Negative Dielectric Constant}, journal = {World Journal of Applied Physics}, volume = {1}, number = {2}, pages = {44-47}, doi = {10.11648/j.wjap.20160102.13}, url = {https://doi.org/10.11648/j.wjap.20160102.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wjap.20160102.13}, abstract = {We consider the generation of diffusive radiation by a charged particle passing through a random stack of plates in the infrared region. The main mechanism causing radiation is multiple scattering of electromagnetic field that is more effective in a medium with near zero average dielectric permittivity. To enhance the radiation intensity one needs to make the scattering more effective. For this goal we suggest to use materials with negative dielectric constant.}, year = {2016} }
TY - JOUR T1 - Radiation from Materials with Negative Dielectric Constant AU - Edik A. Ayryan AU - Koryun B. Oganesyan Y1 - 2016/12/05 PY - 2016 N1 - https://doi.org/10.11648/j.wjap.20160102.13 DO - 10.11648/j.wjap.20160102.13 T2 - World Journal of Applied Physics JF - World Journal of Applied Physics JO - World Journal of Applied Physics SP - 44 EP - 47 PB - Science Publishing Group SN - 2637-6008 UR - https://doi.org/10.11648/j.wjap.20160102.13 AB - We consider the generation of diffusive radiation by a charged particle passing through a random stack of plates in the infrared region. The main mechanism causing radiation is multiple scattering of electromagnetic field that is more effective in a medium with near zero average dielectric permittivity. To enhance the radiation intensity one needs to make the scattering more effective. For this goal we suggest to use materials with negative dielectric constant. VL - 1 IS - 2 ER -