| Peer-Reviewed

Soliton Molecules in the Impurity Component of Self-Trapping Bosonic Impurity

Received: 31 October 2016     Accepted: 26 December 2016     Published: 19 January 2017
Views:       Downloads:
Abstract

We investigate the dynamics of soliton molecules in the impurity component of a trapped Bose-Einstein condensate-impurity mixture (polaronic soliton molecules) using the time dependent Hartree-Fock-Bogoliubov equations in a quasi one-dimensional geometry. We show that the impurity component which obeys the self-focussing nonlinear Schrödinger equation, supports bright soliton molecules even for repulsive interspecies interactions. The binding energy, the width, the equilibrium state and the evolution of such solitons are deeply analyzed within variational and numerical means. We find that our variational and numerical calculations well coincide with each other.

Published in World Journal of Applied Physics (Volume 2, Issue 1)
DOI 10.11648/j.wjap.20170201.11
Page(s) 1-6
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2017. Published by Science Publishing Group

Keywords

Soliton-Molecules, Impurity, BEC, NLSE

References
[1] A. P. Chikkatur, A. Gorlitz, D. M. Stamper-Kurn, S. Inouye, S. Gupta, and W. Ketterle, Phys. Rev. Lett. 85, 483 (2000).
[2] S. Palzer, C. Zipkes, C. Sias, and M. Kohl, Phys. Rev. Lett. 103, 150601 (2009).
[3] J. Catani, L. De Sarlo, G. Barontini, F. Minardi, and M. Inguscio, Phys. Rev. A 77, 011603 (2008).
[4] C. Kohstall, M. Zaccanti, M. Jag, A. Trenkwalder, P. Massignan, G. M. Bruun, F. Schreck, and R. Grimm, Nature 485, 615 (2012).
[5] N. Spethmann, F. Kindermann, S. John, C. Weber, D. Meschede, and A. Widera, Phys. Rev. Lett. 109, 235301 (2012).
[6] J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio, F. Minardi, A. Kantian, and T. Giamarchi, Phys. Rev. A 85, 023623 (2012).
[7] R. Scelle, T. Rentrop, A. Trautmann, T. Schuster, and M. K. Oberthaler, Phys. Rev. Lett. 111, 070401 (2013).
[8] T. Fukuhara, A. Kantian, M. Endres, M. Cheneau, P. Schausz, S. Hild, D. Bellem, U. Schollwock, T. Giamarchi, C. Gross, I. Bloch, and S. Kuhr, Nat. Phys. 9, 235 (2013).
[9] F. M. Cucchietti and E. Timmermans, Phys. Rev. Lett, 96 210401 (2006).
[10] K. Sacha and E. Timmermans, Phys. Rev. A 73, 063604 (2006).
[11] R. M. Kalas and D. Blume, Phys. Rev. A 73, 043608 (2006).
[12] M. Bruderer, W. Bao, and D. Jaksch, EPL 82, 30004 (2008).
[13] A. Boudjemâa, Phys. Rev. A 90, 013628 (2014).
[14] A. Boudjemâa, J. Phys. A: Math. Theor. 48 045002 (2015).
[15] J. Tempere, W. Casteels, M. K. Oberthaler, S. Knoop, E. Timmermans, and J. T. Devreese, Phys. Rev. B 80, 184504 (2009).
[16] J. Vlietinck, W. Casteels, K. Van Houcke, J. Tempere, J. Ryckebusch, and J. T. Devreese, New J. Phys. 17 033023 (2015).
[17] A. Boudjemâa, Communications in Nonlinear Science and Numerical Simulation 33, 85 (2016).
[18] A. Boudjemâa, Communications in Nonlinear Science and Numerical Simulation (2016) in production, http://dx.doi.org/10.1016/j.cnsns.2016.11.027.
[19] P. Rohrmann, A. Hause, F. Mitschke, Scientfic Reports 2, 866 (2012).
[20] P. Rohrmann, A. Hause, F. Mitschke, Phys. Rev. A, 87, 043834 (2013).
[21] A. Boudjemâa and U. Al Khawaja, Phys. Rev. A 88, 045801 (2013).
[22] A. Boudjemâa, PIERS Proceedings, Guangzhou, China, August 25-28, (2014).
[23] S. M. Alamoudi, U. Al Khawaja, and B. B. Baizakov, Phys. Rev. A 89, 053817 (2014).
[24] A. Boudjemâa and M. Benarous, Eur. Phys. J. D 59, 427 (2010).
[25] A. Boudjemâa and M. Benarous, Phys. Rev. A 84, 043633 (2011).
[26] A. Boudjemâa, Phys. Rev. A 86, 043608 (2012).
[27] A. Boudjemâa, Phys. Rev. A 88, 023619 (2013).
[28] A. Boudjemâa, Phys. Rev. A 90, 013628 (2014).
[29] A. Boudjemâa, Phys. Rev. A 91, 063633 (2015).
Cite This Article
  • APA Style

    Abdelaali Boudjemaa, Mohammed-Elhadj Khelifa. (2017). Soliton Molecules in the Impurity Component of Self-Trapping Bosonic Impurity. World Journal of Applied Physics, 2(1), 1-6. https://doi.org/10.11648/j.wjap.20170201.11

    Copy | Download

    ACS Style

    Abdelaali Boudjemaa; Mohammed-Elhadj Khelifa. Soliton Molecules in the Impurity Component of Self-Trapping Bosonic Impurity. World J. Appl. Phys. 2017, 2(1), 1-6. doi: 10.11648/j.wjap.20170201.11

    Copy | Download

    AMA Style

    Abdelaali Boudjemaa, Mohammed-Elhadj Khelifa. Soliton Molecules in the Impurity Component of Self-Trapping Bosonic Impurity. World J Appl Phys. 2017;2(1):1-6. doi: 10.11648/j.wjap.20170201.11

    Copy | Download

  • @article{10.11648/j.wjap.20170201.11,
      author = {Abdelaali Boudjemaa and Mohammed-Elhadj Khelifa},
      title = {Soliton Molecules in the Impurity Component of  Self-Trapping Bosonic Impurity},
      journal = {World Journal of Applied Physics},
      volume = {2},
      number = {1},
      pages = {1-6},
      doi = {10.11648/j.wjap.20170201.11},
      url = {https://doi.org/10.11648/j.wjap.20170201.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wjap.20170201.11},
      abstract = {We investigate the dynamics of soliton molecules in the impurity component of a trapped Bose-Einstein condensate-impurity mixture (polaronic soliton molecules) using the time dependent Hartree-Fock-Bogoliubov equations in a quasi one-dimensional geometry. We show that the impurity component which obeys the self-focussing nonlinear Schrödinger equation, supports bright soliton molecules even for repulsive interspecies interactions. The binding energy, the width, the equilibrium state and the evolution of such solitons are deeply analyzed within variational and numerical means. We find that our variational and numerical calculations well coincide with each other.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Soliton Molecules in the Impurity Component of  Self-Trapping Bosonic Impurity
    AU  - Abdelaali Boudjemaa
    AU  - Mohammed-Elhadj Khelifa
    Y1  - 2017/01/19
    PY  - 2017
    N1  - https://doi.org/10.11648/j.wjap.20170201.11
    DO  - 10.11648/j.wjap.20170201.11
    T2  - World Journal of Applied Physics
    JF  - World Journal of Applied Physics
    JO  - World Journal of Applied Physics
    SP  - 1
    EP  - 6
    PB  - Science Publishing Group
    SN  - 2637-6008
    UR  - https://doi.org/10.11648/j.wjap.20170201.11
    AB  - We investigate the dynamics of soliton molecules in the impurity component of a trapped Bose-Einstein condensate-impurity mixture (polaronic soliton molecules) using the time dependent Hartree-Fock-Bogoliubov equations in a quasi one-dimensional geometry. We show that the impurity component which obeys the self-focussing nonlinear Schrödinger equation, supports bright soliton molecules even for repulsive interspecies interactions. The binding energy, the width, the equilibrium state and the evolution of such solitons are deeply analyzed within variational and numerical means. We find that our variational and numerical calculations well coincide with each other.
    VL  - 2
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Physics, Faculty of Exact Sciences and Informatics, Hassiba Benbouali University of Chlef, Ouled Fares, Chlef, Algeria

  • Department of Physics, Faculty of Exact Sciences and Informatics, Hassiba Benbouali University of Chlef, Ouled Fares, Chlef, Algeria

  • Sections