Electron and positron charge densities are calculated as a function of position in the unit cell for Aluminum Bismuth binary compound. Wave functions are derived from pseudopotential band structure calculations and the independent particle approximation (IPM), respectively, for the electrons and the positrons. It is observed that the positron density is maximum in the open interstices and is excluded not only, from the ion cores but also to a considerable degree from the valence bonds. Electron-positron momentum densities are calculated for (001, 110) planes. The results are used to analyze the positron effects in AlBi.
Published in | World Journal of Applied Physics (Volume 2, Issue 4) |
DOI | 10.11648/j.wjap.20170204.14 |
Page(s) | 113-118 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Positron, Band Structure, Charge Density, Momentum Density
[1] | Ph. Ebert, Surf. Sci. Rep. 33, 121 (1999). |
[2] | %B. Engels, P. Richard, K. Schroeder, S. Blügel, Ph. Ebert, and K. Urban, Phys. Rev. B 58, 7799 (1998). |
[3] | %Dietz, R. E.; Thomas, D. G.; Hopfield, J. J. Phys. Rev. Lett. 1962, 391–393. |
[4] | %Thomas, D. G.; Hopfield, J. J.; Frosch, C. J. Phys. Rev. Lett. 1965, 15, 857–860. |
[5] | %Jianjian Shi, Jiaheng Wang, Wei Yang, Zhejie Zhu, Yichu Wu, Materials Research. 2016; 19(2): 316-321. |
[6] | %E. Schroten, A. Goossens, J. Schoonman, Journal of Applied Physics Vol. 83, 1660-1663 (1998). |
[7] | %Ric P. Shimshock Editor, “Infrared Thin Films”, Deposition Sciences, Inc., Santa Rosa, CA, USA. Published 1992. |
[8] | %M. Aki, Y. Ohno, H. Kohno and S. Takeda, Phil. Mag. A 59 (2000) 2694-2699. |
[9] | %V. K. Gupta, C. C. Wamsley, M. W. Koch, and G. W. Wicks, J. Vac. Sci. and Technol. B 17, 1246 (1999). |
[10] | %Yan Zhao and Donald G. Truhlar, THE JOURNAL OF CHEMICAL PHYSICS 128, 184109 (2008). |
[11] | %J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003). |
[12] | %Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006). |
[13] | %M. Gruning, O. Gritsenko, and E. J. Baerends, J. Phys. Chem. A 108, 4459 (2004). |
[14] | %H. Zenasni, H. Aourag, S. R. Broderick, and K. Rajan, Phys. Status Solidi B 247, No. 1, 115–121 (2010). |
[15] | %J. Hafner et al, MRS BULLETIN • Vol. 31, (2006). |
[16] | %Grimme, S. J. Comput. Chem., 25: 1463–1473 (2004). |
[17] | %Jing-Jing Zheng, E. R. Margine, Phys. Rev. B 94, 064509 (2016). |
[18] | %R. Khatri et al, AIP Conference Proceedings 1536, 419 (2013). |
[19] | %M. Ameri, M. Fodil, Fatma Z. Aoumeur-Benkabou, Z. Mahdjoub, F. Boufadi, A. Bentouaf Materials Sciences and Applications, Vol. 3 No. 11, (2012). |
[20] | %D. G. Green and G. F. Gribakin, Phys. Rev. A 95, 036701 (2017). |
[21] | %X. Ma, M. Wang, Y. Zhu, Y. Liu, C. Yang, and D. Wang, Phys. Rev. A 94, 052709 (2016). |
[22] | %K. Fujiwara, T, Hyodo, J. Phys. Soc. Jpn, 35 (1973) 1133. |
[23] | %M. Saito, A. Oshiyama, S. Tanigawa, Private communication. |
[24] | %W. Liu, S. Berko and A. P. Mills Jr., Positron annihilation, Matter. Sci. Forum, Szombachely, 743 (1992). |
[25] | %R. R. Q. Freitas et al, J. Phys. Chem. C, 2015, 119 (41), pp 23599–23606. |
[26] | %Scott Broderick, Graduate Theses and Dissertations, Iowa State University (2009). |
APA Style
Noureddine Amrane, Maamar Benkraouda. (2017). Theoretical Studies of Positron Annihilation in Aluminum Bismuth Alloy. World Journal of Applied Physics, 2(4), 113-118. https://doi.org/10.11648/j.wjap.20170204.14
ACS Style
Noureddine Amrane; Maamar Benkraouda. Theoretical Studies of Positron Annihilation in Aluminum Bismuth Alloy. World J. Appl. Phys. 2017, 2(4), 113-118. doi: 10.11648/j.wjap.20170204.14
@article{10.11648/j.wjap.20170204.14, author = {Noureddine Amrane and Maamar Benkraouda}, title = {Theoretical Studies of Positron Annihilation in Aluminum Bismuth Alloy}, journal = {World Journal of Applied Physics}, volume = {2}, number = {4}, pages = {113-118}, doi = {10.11648/j.wjap.20170204.14}, url = {https://doi.org/10.11648/j.wjap.20170204.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wjap.20170204.14}, abstract = {Electron and positron charge densities are calculated as a function of position in the unit cell for Aluminum Bismuth binary compound. Wave functions are derived from pseudopotential band structure calculations and the independent particle approximation (IPM), respectively, for the electrons and the positrons. It is observed that the positron density is maximum in the open interstices and is excluded not only, from the ion cores but also to a considerable degree from the valence bonds. Electron-positron momentum densities are calculated for (001, 110) planes. The results are used to analyze the positron effects in AlBi.}, year = {2017} }
TY - JOUR T1 - Theoretical Studies of Positron Annihilation in Aluminum Bismuth Alloy AU - Noureddine Amrane AU - Maamar Benkraouda Y1 - 2017/11/11 PY - 2017 N1 - https://doi.org/10.11648/j.wjap.20170204.14 DO - 10.11648/j.wjap.20170204.14 T2 - World Journal of Applied Physics JF - World Journal of Applied Physics JO - World Journal of Applied Physics SP - 113 EP - 118 PB - Science Publishing Group SN - 2637-6008 UR - https://doi.org/10.11648/j.wjap.20170204.14 AB - Electron and positron charge densities are calculated as a function of position in the unit cell for Aluminum Bismuth binary compound. Wave functions are derived from pseudopotential band structure calculations and the independent particle approximation (IPM), respectively, for the electrons and the positrons. It is observed that the positron density is maximum in the open interstices and is excluded not only, from the ion cores but also to a considerable degree from the valence bonds. Electron-positron momentum densities are calculated for (001, 110) planes. The results are used to analyze the positron effects in AlBi. VL - 2 IS - 4 ER -