Assuming a linear equation of state and charged anisotropic matter, in this paper we obtain two new classes of exact solutions of the Einstein-Maxwell system with a particular form of the metric potential Z deduced for Malaver (2016). A physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. The obtained models not admit singularities in the charge density and the matter at the centre.
Published in | World Journal of Applied Physics (Volume 1, Issue 1) |
DOI | 10.11648/j.wjap.20160101.13 |
Page(s) | 20-25 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Linear Equation of State, Exact Solution, Charged Anisotropic Matter, Metric Potential, Charge Density
[1] | Kuhfitting, P. K. (2011). Some remarks on exact wormhole solutions, Adv. Stud. Theor. Phys., 5, 365-367. |
[2] | Bicak, J. (2006). Einstein equations: exact solutions, Encyclopedia of Mathematical Physics, 2, 165-173. |
[3] | Malaver, M. (2013). Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9. |
[4] | Komathiraj, K., and Maharaj, S. D. (2008). Classes of exact Einstein-Maxwell solutions, Gen. Rel. Grav., 39, 2079-2093. |
[5] | Sharma, R., Mukherjee, S and Maharaj, S. D. (2001). General solution for a class of static charged stars, Gen. Rel. Grav., 33, 999-110. |
[6] | Schwarzschild, K. (1916). Über das Gravitationsfeld einer Kugel ausinkompressibler Flüssigkeit, Math. Phys. Tech, 424-434. |
[7] | Tolman, R. C. (1939). Static Solutions of Einstein's Field Equations for Spheres of Fluid, Phys. Rev., 55, 364-373. |
[8] | Oppenheimer, J. R. and Volkoff, G. (1939). On massive neutron cores, Phys. Rev., 55, 374-381. |
[9] | Chandrasekhar, S. (1931). Mass of Ideal White Dwarfs, Astrophys. J., 74, 81-82. |
[10] | Baade, W., and Zwicky, F. (1934). Cosmic Rays from Super-Novae, Proc. Nat. Acad. Sci. U.S., (20), 259-263. |
[11] | Komathiraj, K., and Maharaj, S. D. (2007). Analytical models for quark stars, Int. J. Mod. Phys., D16, pp. 1803-1811. |
[12] | Bowers, R. L., Liang, E. P. T.: Astrophys. J., 188, 657 (1974). |
[13] | Cosenza, M., Herrera, L., Esculpi, M. and Witten, L. (1981), J. Math. Phys., 22 (1), 118. |
[14] | Gokhroo, M. K., and Mehra. A. L. (1994). Anisotropic spheres with variable energy density in general relativity. Gen. Relat. Grav., 26 (1), 75-84. |
[15] | Sokolov. A. I. (1980), Sov. Phys. JETP., 52, 575. |
[16] | Usov, V. V.: Phys. Rev. D, 70, 067301 (2004). |
[17] | Malaver, M. (2009). Análisis comparativo de algunos modelos analíticos para estrellas de quarks, Revista Integración, 27, 125-133. |
[18] | Malaver, M. AASCIT Communications, 1, 48-51 (2014). |
[19] | Thirukkanesh, S., and Maharaj, S. D. (2008). Charged anisotropic matter with linear equation of state, Class. Quantum Gravity, 25, 235001. |
[20] | Maharaj, S. D., Sunzu, J. M. and Ray, S. (2014). Eur. Phys. J. Plus., 129, 3. |
[21] | Thirukkanesh, S., and Ragel, F. C. (2013). A class of exact strange quark star model, PRAMANA-Journal of physics, 81 (2), 275-286. |
[22] | Sunzu, J. M, Maharaj, S. D. and Ray, S.(2014). Astrophysics. Space. Sci. 354, 517- 524. |
[23] | Feroze, T., and Siddiqui, A. (2011). Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav., 43, 1025-1035. |
[24] | Feroze, T., and Siddiqui, A. (2014). Some exact solutions of the Einstein-Maxwell equations with a quadratic equation of state, Journal of the Korean Physical Society, 65 (6), 944-947. |
[25] | Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State, Frontiers of Mathematics and Its Applications., 1 (1), 9-15. |
[26] | Malaver, M. (2015). Relativistic Modeling of Quark Stars with Tolman IV Type Potential, International Journal of Modern Physics and Application., 2 (1), 1-6. |
[27] | Takisa, P. M., and Maharaj, S. D. (2013). Some charged polytropic models, Gen. Rel. Grav., 45, 1951-1969. |
[28] | Thirukkanesh, S., and Ragel, F. C. (2012). Exact anisotropic sphere with polytropic equation of state, PRAMANA-Journal of physics, 78 (5), 687-696. |
[29] | Malaver, M. (2013). Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics, 1 (4), 41-46. |
[30] | Malaver, M. (2013). Regular model for a quark star with Van der Waals modified equation of state, World Applied Programming., 3, 309-313. |
[31] | Raghoonundun, A., and Hobill, D. (2015). Possible physical realizations of the Tolman VII solution, Physical Review D 92, 124005. |
[32] | Malaver, M. (2016). Analytical models for compact stars with a linear equation ofstate, World Scientific News, 50, 64-73. |
[33] | Durgapal, M. C., and Bannerji, R. (1983). New analytical stellar model in general relativity, Phys. Rev. D27, 328-331. |
[34] | Bibi, R., Feroze, T. and Siddiqui, A. (2016). Solution of the Einstein-Maxwell equations with Anisotropic negative pressure as a potential model of a dark energy star, Canadian Journal of Physics, 94 (8), 758-762. |
APA Style
Manuel Malaver. (2016). Anisotropic Stars with a Prescribed Form of Metric Potential Z. World Journal of Applied Physics, 1(1), 20-25. https://doi.org/10.11648/j.wjap.20160101.13
ACS Style
Manuel Malaver. Anisotropic Stars with a Prescribed Form of Metric Potential Z. World J. Appl. Phys. 2016, 1(1), 20-25. doi: 10.11648/j.wjap.20160101.13
@article{10.11648/j.wjap.20160101.13, author = {Manuel Malaver}, title = {Anisotropic Stars with a Prescribed Form of Metric Potential Z}, journal = {World Journal of Applied Physics}, volume = {1}, number = {1}, pages = {20-25}, doi = {10.11648/j.wjap.20160101.13}, url = {https://doi.org/10.11648/j.wjap.20160101.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wjap.20160101.13}, abstract = {Assuming a linear equation of state and charged anisotropic matter, in this paper we obtain two new classes of exact solutions of the Einstein-Maxwell system with a particular form of the metric potential Z deduced for Malaver (2016). A physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. The obtained models not admit singularities in the charge density and the matter at the centre.}, year = {2016} }
TY - JOUR T1 - Anisotropic Stars with a Prescribed Form of Metric Potential Z AU - Manuel Malaver Y1 - 2016/08/31 PY - 2016 N1 - https://doi.org/10.11648/j.wjap.20160101.13 DO - 10.11648/j.wjap.20160101.13 T2 - World Journal of Applied Physics JF - World Journal of Applied Physics JO - World Journal of Applied Physics SP - 20 EP - 25 PB - Science Publishing Group SN - 2637-6008 UR - https://doi.org/10.11648/j.wjap.20160101.13 AB - Assuming a linear equation of state and charged anisotropic matter, in this paper we obtain two new classes of exact solutions of the Einstein-Maxwell system with a particular form of the metric potential Z deduced for Malaver (2016). A physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. The obtained models not admit singularities in the charge density and the matter at the centre. VL - 1 IS - 1 ER -