We have calculated the structural, elastic, mechanical and electronic properties of cubic Hg0.5Cd0.5Te by using the first-principles density functional theory (DFT) within the local density approximation (LDA) plus virtual crystal approximation (VCA). Compared with the previous experimental and theoretical data of cubic Hg0.5Cd0.5Te, our calculated results demonstrate the adequacy of using the LDA+VCA for HgCdTe, which is expected to help people design new tellurium based multi-alloys using VCA.
Published in | World Journal of Applied Physics (Volume 1, Issue 1) |
DOI | 10.11648/j.wjap.20160101.14 |
Page(s) | 26-29 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Density Functional Theory, Electronic Structure, Elastic Properties, HgCdTe
[1] | M. A. Berding, W. D. Nix, D. R. Rhiger, S. Sen, A. Sher, J. Electron. Mater. 29 (2000) 676. |
[2] | D. S. Bale, S. A. Soldner, C. Szeles, Appl. Phys. Lett. 92 (2008) 082101. |
[3] | G. Koley, J. Liu, K. C. Mandal, Appl. Phys. Lett. 90 (2007) 102121. |
[4] | C. Roux, E. Hadji, J.-L. Pautrat, Appl. Phys. Lett. 75 (1999) 3763. |
[5] | F. Yue, J. Shao, X. Lü, W. Huang, J. Chu, J. Wu, X. Lin, L. He, Appl. Phys. Lett. 89 (2006) 021912. |
[6] | A. Rogalski, Infrared Phys. Tech. 41 (2000) 213. |
[7] | J. Shao, L. Ma, X. Lü, W. Lu, J. Wu, F.-X. Zha, Y.-F. Wei, Z.-F. Li, S.-L. Guo, J.-R. Yang, L. He, J.-H. Chu, Appl. Phys. Lett. 93 (2008) 131914. |
[8] | D. Brun-Le Cunff, B. Daudin, J. L. Rouvière, Appl. Phys. Lett. 69 (1996) 514. |
[9] | W. J. McNeil, D. S. McGregor, A. E. Bolotnikov, G. W. Wright, R. B. James, Appl. Phys. Lett. 84 (2004) 1988. |
[10] | M. Chu, S. Terterian, D. Ting, C. C Wang, H. K. Gurgenian, S. Mesropian, Appl. Phys. Lett. 79 (2001) 2728. |
[11] | H. Y. Cui, Z. F. Li, Z. L. Liu, C. Wang, X. S. Chen, X. N. Hu, Z. H. Ye, W. Lu, Appl. Phys. Lett. 92 (2008) 021128. |
[12] | D. Donetsky, G. Belenky, S. Svensson, S. Suchalkin, Appl. Phys. Lett. 97 (2010) 052108. |
[13] | M. K. Haigh, G. R. Nash, N. T. Gordon, J. Edwards, A. Graham, J. Giess, J. E. Hails, M. Houlton, Appl. Phys. Lett. 86 (2005) 011910. |
[14] | F. X. Zha, S. M. Zhou, H. L. Ma, F. Yin, B. Zhang, T. X. Li, J. Shao, X. C. Shen, Appl. Phys. Lett. 93 (2008) 151113. |
[15] | P. Boieriu, C. H. Grein, S. Velicu, J. Garland, C. Fulk, S. Sivananthan, A. Stoltz, L. Bubulac, J. H. Dinan, Appl. Phys. Lett. 88 (2006) 062106. |
[16] | Y. Chang, C. H. Grein, J. Zhao, C. R. Becker, M. E. Flatte, P.-K. Liao, F. Aqariden, S. Sivananthan, Appl. Phys. Lett. 93 (2008) 192111. |
[17] | F. X. Zha, J. Shao, J. Jiang, W. Y. Yang, Appl. Phys. Lett. 90 (2007) 201112. |
[18] | J. Shao, L. Chen, W. Lu, X. Lü, L. Q. Zhu, S. L. Guo, L. He, J. H. Chu, Appl. Phys. Lett. 96 (2010) 121915. |
[19] | Y. Chang, G. Badano, E. Jiang, J. W. Garland, J. Zhao, C. H. Grein, S. Sivananthan, J. Crystal Growth 277 (2005) 78. |
[20] | J. R. Lindle, W. W. Bewley, I. Vurgaftman, J. R. Meyer, M. L. Thomas, E. C. Piquette, D. D. Edwall, W. E. Tennant, Appl. Phys. Lett. 90 (2007) 241119. |
[21] | B. C. Fodness, P. W. Marshall, R. A. Reed, T. M. Jordan, J. C. Pickel, I. Jun, M. A. Xapsos, E. A. Burke, R. Ladbury, “Monte carlo treatment of displacement damage in bandgap engineered HgCdTe detectors” Proceedings of RADECS 2003: Radiation and its effects on components and systems, Noordwijk, The Netherlands, 479-485 (2003). |
[22] | A. V. Voitsekhovskii, A. P. Kokhanenko, S. A. Shulga, R. Smith, Nuclear Instruments and Methods in Physics Research B 227 (2005) 531. |
[23] | H. Duan, X. S. Chen, Y. Huang, W. Lu, Solid State Commun. 143 (2007) 471. |
[24] | P. Kokkonis, V. Leute, Solid State Ionics 176 (2005) 2681. |
[25] | X. J. Chen, X. L. Hua, J. S. Hu, J.-M. Langlois, W. A. Goddard Ⅲ, Phys. Rev. B 53 (1996) 1377, and the reference therein. |
[26] | X. J. Chen, A. Mintz, J. S. Hu, X. L. Hua, J. Zinck, W. A. Goddard Ⅲ, J. Vac. Sci. Technol. B 13 (1995) 1715. |
[27] | A. E. Merad, M. B. Kanoun, G. Merad, J. Cibert, H. Aourag, Mater. Chem. Phys. 92 (2005) 333. |
[28] | J. J. Tan, Y. Li, G. F. Ji, Comput. Mater. Sci. 58 (2012) 243. |
[29] | Ö. Akinci, H. H. Gürel, H. Ünlü, Thin Solid Films 517 (2009) 2431. |
[30] | H. Duan, X. S. Chen, L. Z Sun, X. H. Zhou, W. Lu, Acta Physica Sinica 54 (2005) 5293. |
[31] | S. Tongay, E. Durgun, S. Ciraci, Appl. Phys. Lett. 85 (2004) 6179. |
[32] | T. Ouahrani, A. H. Reshak, R. Khenata, H. Baltache, B. Amrani, A. Bouhemadou, Phys. Status Solidi B 248 (2011) 712. |
[33] | H. Duan, X. S. Chen, Y. Huang, X. H. Zhou, L. Z. Sun, W. Lu, Phys. Rev. B 76 (2007) 035209. |
[34] | G. Wang, S. Wu, Z. H. Geng, S. Y. Wang, L. Y. Chen, Y. Jia, J. Korean Phys. Soc. 56 (2010) 1307, and the reference therein. |
[35] | L. Bellaiche, D. Vanderbilt, Phys. Rev. B 61 (2000) 7877. |
[36] | S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, M. C. Payne, Z. Kristallogr. 220 (2005) 567. |
[37] | H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13 (1976) 5188. |
[38] | K. Sang Park, S. Syck Jun, S.-U. Kim, M. Jang Park, J. Korean Phys. Soc. 22 (1989) 192. |
[39] | A. Werner, H. D. Hochheimer, K. Stroessner, A. Jayaraman, Phys. Rev. B 28 (1983) 3330. |
[40] | J. C. Woolley, B. Ray, J. Phys. Chem. Solids 15 (1960) 27. |
[41] | O. V. Vojshcheknivkii, Ukrains'kii Fizichnii Zhurnal (Ukrainian Edition) 9 (1964) 796. |
[42] | M. Kh. Rabadanov, I. A. Verin, Yu. M. Ivanov, V. I. Simonov, Kristallografiya 46 (2001) 703. |
[43] | Z. W. Lu, D. Singh, H. Krakauer, Phys. Rev. B 39 (1989) 10154. |
[44] | M. Born, K. Huang, Dynamical Theory and Experiment I, Springer-Verlag, Berlin, 1982. |
[45] | S. F. Pugh, Philos. Mag. 45 (1954) 833. |
APA Style
Wei Zeng, Qi-Jun Liu, Zheng-Tang Liu. (2016). First-Principles Local Density Plus Virtual Crystal Approximations Study of HgCdTe. World Journal of Applied Physics, 1(1), 26-29. https://doi.org/10.11648/j.wjap.20160101.14
ACS Style
Wei Zeng; Qi-Jun Liu; Zheng-Tang Liu. First-Principles Local Density Plus Virtual Crystal Approximations Study of HgCdTe. World J. Appl. Phys. 2016, 1(1), 26-29. doi: 10.11648/j.wjap.20160101.14
@article{10.11648/j.wjap.20160101.14, author = {Wei Zeng and Qi-Jun Liu and Zheng-Tang Liu}, title = {First-Principles Local Density Plus Virtual Crystal Approximations Study of HgCdTe}, journal = {World Journal of Applied Physics}, volume = {1}, number = {1}, pages = {26-29}, doi = {10.11648/j.wjap.20160101.14}, url = {https://doi.org/10.11648/j.wjap.20160101.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.wjap.20160101.14}, abstract = {We have calculated the structural, elastic, mechanical and electronic properties of cubic Hg0.5Cd0.5Te by using the first-principles density functional theory (DFT) within the local density approximation (LDA) plus virtual crystal approximation (VCA). Compared with the previous experimental and theoretical data of cubic Hg0.5Cd0.5Te, our calculated results demonstrate the adequacy of using the LDA+VCA for HgCdTe, which is expected to help people design new tellurium based multi-alloys using VCA.}, year = {2016} }
TY - JOUR T1 - First-Principles Local Density Plus Virtual Crystal Approximations Study of HgCdTe AU - Wei Zeng AU - Qi-Jun Liu AU - Zheng-Tang Liu Y1 - 2016/11/10 PY - 2016 N1 - https://doi.org/10.11648/j.wjap.20160101.14 DO - 10.11648/j.wjap.20160101.14 T2 - World Journal of Applied Physics JF - World Journal of Applied Physics JO - World Journal of Applied Physics SP - 26 EP - 29 PB - Science Publishing Group SN - 2637-6008 UR - https://doi.org/10.11648/j.wjap.20160101.14 AB - We have calculated the structural, elastic, mechanical and electronic properties of cubic Hg0.5Cd0.5Te by using the first-principles density functional theory (DFT) within the local density approximation (LDA) plus virtual crystal approximation (VCA). Compared with the previous experimental and theoretical data of cubic Hg0.5Cd0.5Te, our calculated results demonstrate the adequacy of using the LDA+VCA for HgCdTe, which is expected to help people design new tellurium based multi-alloys using VCA. VL - 1 IS - 1 ER -